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A new method for shape optimization for unsteady viscous flows is presented. It is based on
the continuous adjoint approach using a time accurate method and is capable of handling
both inverse and direct objective functions. The objective function is minimized or maxi-
mized subject to the satisfaction of flow equations. The shape of the body is parametrized
via a Non-Uniform Rational B-Splines (NURBS) curve and is updated by using the gradients
obtained from solving the flow and adjoint equations. A finite element method based on
streamline-upwind Petrov/Galerkin (SUPG) and pressure stabilized Petrov/Galerkin (PSPG)
stabilization techniques is used to solve both the flow and adjoint equations. The method
has been implemented and tested for the design of airfoils, based on enhancing its time-aver-
aged aerodynamic coefficients. Interesting shapes are obtained, especially when the objec-
tive is to produce high performance airfoils. The effect of the extent of the window of time
integration of flow and adjoint equations on the design process is studied. It is found that
when the window of time integration is insufficient, the gradients are most likely to be
erroneous.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Increased computing capabilities and better algorithms in the last two decades have led to an increased interest in aero-
dynamic shape optimization. Many methods have been proposed and successfully utilized in the past. Some of them are ran-
dom search methods [1], complex Taylor series expansion approach [2], automatic differentiation method [3], direct
differentiation method [4] and adjoint based methods [5,6]. In adjoint based methods the cost of computing the gradients
or sensitivities is independent of the number of design variables. These methods have found wide acceptance in aerodynamic
shape optimization [7,8]. They have been utilized in various design applications in diverse areas such as aerospace [9–12],
marine [13] and bio-medical engineering [14]. These methods attempt to seek the local optima in the design space. The pos-
sibility of the optimum being the global optima depends on the choice of the initial guess used in the optimization process.
Srinath and Mittal [15] applied the adjoint based methods to optimize airfoils for aerodynamic performance in steady flow
for Re 6 500. Various objective functions, such as maximization of lift, minimization of drag and maximization of lift-to-drag
ratio were considered. Very interesting shapes, especially at very low Re, were obtained. It was shown that the choice of
objective function is vital to the results from the optimization process. The effect of imposing a volume constraint was also
studied. Most of the effort in adjoint based methods has focused on design in the steady regime. Efforts in the optimization in
unsteady flows have been few and fall in one of the two kinds: time accurate and frequency domain methods.

In time accurate methods the governing equations are solved in the time domain. We list some efforts in the past that
have utilized this approach. He et al. [16] minimized the drag of a rotating cylinder at Re ¼ 200 and 1000 by controlling
. All rights reserved.
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the frequency and amplitude of the angular velocity imparted to the cylinder. They used a direct objective function on the
drag. Homescu et al. [17] applied the time accurate adjoint method to suppress Karman vortex shedding in the wake of a
spinning cylinder at Re ranging from 60 to 1000. To obtain the optimal angular velocity that suppresses shedding, they used
an objective function which minimizes the L2 norm of the difference between the computed velocity and a desired velocity.
The steady velocity field obtained at Re ¼ 2 was used as the desired velocity. Okumura and Kawahara [18] applied the adjoint
method to reduce the force on a Re ¼ 200 flow past a circular cylinder. A streamlined shape was achieved as a consequence
of drag reduction. Nadarajah and Jameson [19] compared the result of a full unsteady optimization with that of a multi-point
approach for the design of a pitching airfoil in an unsteady inviscid flow. In the multi-point approach the unsteady flow and
the corresponding adjoint variables are replaced with the steady quantities at each time step. They observed that both the
methods yield similar results for low pitch frequency of the airfoil. However, significantly different values of the gradient are
obtained from the two methods for higher frequency of pitch oscillations. Mani and Mavriplis [20] also applied the adjoint
method for shape optimization of a pitching airfoil in an inviscid flow. They used an Arbitrary Lagrangian–Eularian (ALE)
formulation with deforming mesh. It was noticed that when the number of design variables is large, the optimizer is not able
to achieve the prescribed convergence criteria. Convergence is achieved when the number of design variables is reduced.
They attributed the problem to the complexity of the design space and the inability of the optimizer to navigate through
it. Rumpfkeil and Zingg [21,22] carried out an inverse design of a multi-element airfoil at high angle of attack and
Re ¼ 800. The objective was to control the pressure in the near-field plane. They used flow fields only at intermittent time
steps to compute the adjoint and gradient. They observed that if the information from a certain large number of time steps is
skipped, then the optimizer is not able to converge. Collis et al. [23] extended optimization in unsteady flows to compressible
flows. They analyzed the interaction of two counter-rotating vortices with a wall at Re ¼ 25. The temporal and spatial dis-
tribution of velocity normal to the wall was used as the control. They noticed that the gradients are strongly dependent on
the choice of the control space.

In the frequency domain methods [24,25] the governing equations are solved in the frequency domain. A Fourier trans-
formation is used for the conversion from the time to frequency domain. Duta et al. [26] applied this method to reduce the
blade vibration due to incoming unsteady flows for turbo-machinery applications. Nadarajah et al. [27] compared the time
accurate method with the frequency domain method for the reduction of drag of an oscillating airfoil in an inviscid medium.
They found that both the methods produce identical results. However, the frequency domain method is less expensive. It
should be noted that the frequency domain methods are applicable only if the flow is periodic in time. Nadarajah and Tatos-
sian [28] extended the frequency domain method to viscous flows. They minimized the drag of a helicopter rotor blade while
maintaining a constant lift.

In the present work, a new method based on the continuous adjoint approach is formulated, implemented and demon-
strated for the design of airfoils in an unsteady viscous flow. A stabilized finite element method based on streamline-upwind
Petrov/Galerkin (SUPG) and pressure stabilized Petrov/Galerkin (PSPG)[29] stabilization techniques is employed to solve,
both, the flow and the adjoint equations. The geometry of the airfoil is parametrized by a fourth order Non-Uniform Rational
B-Splines (NURBS) curve [37]. The mesh close to the surface of the airfoil is structured while it is unstructured away from the
airfoil. A reference mesh is generated and later deformed to accommodate new shapes via a mesh moving scheme [43]. In
this scheme the modified equations of linear elasticity are solved to obtain internal nodal displacements based on the change
in the shape of the surface. The Limited memory-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [42] is used to
minimize the objective function. The formulation is tested on two cases. The first involves an inverse objective function:
to determine the shape of an airfoil that has a certain time-averaged lift coefficient at Re ¼ 1000. The effect of varying the
time-averaged lift coefficient on the shape of the airfoil is investigated. The second test case involves a direct objective func-
tion: to find the shape of an airfoil that has the least drag to lift ratio.

One of the challenges in unsteady flow optimization is to compute reasonably accurate gradients within the constraints of
available computational resources. The issue of accuracy of the gradients has been analyzed by Nadarajah et al. [27] for invis-
cid flows. They computed the gradient by using the flow and adjoint solutions obtained over the last time period. The effect
of the number of time steps in one time period on the accuracy of the gradient was studied. It was found that the accuracy of
the gradient increases with increase in number of time steps in each time period.

The time period of unsteadiness is usually not known a priori. Therefore gradients must be estimated from flow computed
for sufficiently long time. The effect of the extent of window, for time integration of flow and adjoint equations, on the opti-
mization process is investigated in this study. The accuracy of gradients is also studied.
2. Governing equations

Let X � Rnsd and ð0; TÞ be the spatial and temporal domains, respectively, where nsd is the number of space dimensions.Let
C represent the boundary of X. The spatial and temporal co-ordinates are denoted by x and t. The Navier–Stokes equations
governing incompressible flow are
q
@u
@t
þ u � ru

� �
�r � r ¼ 0 on X� ð0; TÞ; ð1Þ

r � u ¼ 0 on X� ð0; TÞ: ð2Þ
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Here q;u and r are the density, velocity and stress tensor, respectively. For a Newtonian fluid the stress tensor is given as
r ¼ �pI þ l½ruþ ðruÞT � where, p is the pressure and I the identity tensor. The boundary conditions are either on the flow
velocity or stress. Both, Dirichlet and Neumann type boundary conditions are considered in the following form:
Fig. 1.
the bod
u ¼ g on Cg ; ð3Þ
n � r ¼ h on Ch; ð4Þ
where, n is the unit normal vector on the boundary C. Here, Cg and Ch are the subsets of the boundary C. More details on the
boundary conditions are given in Fig. 1. CU ;CD and CS represent the upstream, downstream and lateral boundaries, respec-
tively. The surface of the body is represented by CB.

The initial condition on the velocity is specified as:
uðx; 0Þ ¼ u0 on X; ð5Þ
where u0 is divergence free.
The drag and lift force coefficients, ðCd;ClÞ, on the body are calculated using the following expression:
ðCd;ClÞ ¼
2

qU2S

Z
CB

rndC: ð6Þ
The time-averaged coefficients are calculated as follows:
Cd ¼
1
T

Z t0þT

t0

CdðtÞdt; ð7Þ

Cl ¼
1
T

Z t0þT

t0

ClðtÞdt: ð8Þ
The time-averaging begins at t ¼ t0 to leave out the transient effect of the initial condition on the fully developed flow.

3. The adjoint approach

3.1. The augmented objective function

Let CB be the segment of the boundary whose shape is to be determined. Let b ¼ ðb1; . . . ; bmÞ be the set of shape param-
eters that determine CB. The optimization problem involves finding the shape parameters that minimize (or maximize) the
objective function, IcðU; bÞ.

The flow Eqs. (1) and (2) are treated as constraint conditions on the objective function. An augmented objective function
is constructed to convert the constrained problem to an unconstrained one. The flow equations are augmented to the objec-
tive function by introducing a set of Lagrange multipliers or adjoint variables W ¼ ðwu;wpÞ
I ¼ Ic �
Z T

0

Z
X

wpr � udXdt þ
Z T

0

Z
X

wu: q
@u
@t
þ u � ru

� �
�r � r

� �
dXdt: ð9Þ
Schematic of the problem set-up: boundary conditions. CU ;CD and CS are the upstream, downstream and lateral boundaries, respectively and CB is
y surface.
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The augmented objective function, is given by Eq. (9), degenerates to the original one if the flow variables, U ¼ ðu; pÞ, ex-
actly satisfy Eqs. (1) and (2). The variables wu and wp are referred to as the adjoint velocity and adjoint pressure, respectively.
The first variation of the augmented objective function is given by:
dI ¼ @I
@U

dU þ @I
@b

dbþ @I
@W

dW: ð10Þ
The optimal solution is achieved when the variation of the augmented objective function vanishes, i.e., dI ¼ 0. This re-
quires that the variation of I with respect to the flow variables U, design parameters b and the adjoint variables W should
go to zero, independently. Variation of I with respect to U is given by:
@I
@U
¼ @Ic

@U
� @

@U

Z T

0

Z
X

wpr � udXdt þ @

@U

Z T

0

Z
X

wu � q
@u
@t
þ u � ru

� �
�r � r

� �
dXdt: ð11Þ
The above relation, when set to zero, leads to a set of equations and boundary conditions that are used to evaluate the
adjoint variables. This will be described in more detail in the following subsection. Variation of I with respect to W gives back
the flow Eqs. (1) and (2). The gradient, @I

@b
, is utilized to find the optimal shape parameters. It quantifies the sensitivity of the

objective function to the design parameters. It is used by the optimizer to refine the search direction. The vanishing of the
gradient reflects the attainment of optimal shape. The gradient is evaluated using the following expression:
@I
@b
¼ @Ic

@b
� @

@b

Z T

0

Z
X

wpr � udXdt þ @

@b

Z T

0

Z
X

wu � q
@u
@t
þ u � ru

� �
�r � r

� �
dXdt: ð12Þ
3.2. The adjoint equations and related boundary and terminal conditions

The equations and boundary conditions for the adjoint variables are obtained by setting the variation of I with respect to
the flow variables U, given in Eq. (11), to zero. The equations governing the adjoint variables are:
q � @wu

@t
þ ðruÞTwu � ðu � rÞwu

� �
�r � rw ¼ 0 on X� ð0; TÞ; ð13Þ

r � wu ¼ 0 on X� ð0; TÞ; ð14Þ
where, rw is similar to the stress tensor and is given by rw ¼ �wpI þ l½rwu þ ðrwuÞ
T �.

The boundary conditions on the adjoint variables are:
wu ¼ 0 on CU ; ð15Þ
s ¼ 0 on CD; ð16Þ
s1 ¼ 0; wu2 ¼ 0 on CS; ð17Þ

�
Z T

0

Z
CB

dðr � nÞ � wu dCdt þ @Ic

@u
duþ @Ic

@p
dp ¼ 0 on CB; ð18Þ
where, s ¼ fuwu � Iwp þ m½rwu þ ðrwuÞ
T �g:n. The terminal condition on the adjoint velocity is given by:
wuðu; TÞ ¼ 0 on X: ð19Þ
The adjoint equations (13) and (14) are a set of coupled linear partial differential equations. Unlike the flow equations (1)
and (2), the equations for the adjoint variables are posed backward in time. In the present work, the adjoint variables are
computed once the time integration of the flow equations has been carried out and results stored. It is possible to solve
the flow and adjoint equations simultaneously [44,45]. However, this procedure can be computationally expensive and is
not being used in the present work.

The conditions on the boundary, given by Eq. (18), depend on the definition of the objective function. This is illustrated
with a few examples. The objective function to minimize the time-averaged drag coefficient is given by Ic ¼ 1

2 Cd
2. In this sit-

uation the boundary condition is given by
Wu ¼ �Cd

T
;0

 !
on CB � ð0; TÞ:
Here, T is the time duration for which the aerodynamic coefficients are averaged and adjoints computed. Similarly, the
objective function to maximize the ratio of the time-averaged lift coefficient to the time-averaged drag coefficient is given

by Ic ¼ � 1
2

Cl

Cd

� �2
. In this case the boundary condition on CB is given by
Wu ¼ �1
T

Cl
2

Cd
3
;
1
T

Cl

Cd
2

 !
on CB � ð0; TÞ:
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4. Finite element formulation

4.1. Flow equations

The domain, X, is discretized into subdomains Xe; e ¼ 1;2; . . . ; nel, where nel is the number of elements. A stabilized finite
element method using piecewise linear interpolation functions for velocity and pressure is employed to discretize the gov-
erning equations (1) and (2). The trial and test function spaces are defined as:
Sh
u ¼ uhjuh 2 ðH1hÞnsd ;uh¼: gh on Cg

n o
;

Vh
u ¼ fwhjwh 2 ðH1hÞnsd ;wh¼: 0 on Cgg;
Sh

p ¼ Vh
p ¼ fqhjqh 2 H1hg:
The function space H1hðXÞ is given by:
H1hðXÞ ¼ f/hj/h 2 C0ðXÞ;/hjXe 2 P1g;
where, P1 represent the first-order polynomials. The finite element formulation of the governing Eqs. (1) and (2) is as follows:
find uh 2 Sh

u and ph 2 Sh
p such that 8wh 2 Vh

u and qh 2 Vh
p ,
Z

X
wh � q @uh

@t
þ uh � $uh

� �
dXþ

Z
X
�ðwh : rðph;uhÞÞdXþ

Z
X

qh$ � uh dXþ
Xnel

e¼1

Z
Xe

1
q
ðsSUPGquh � rwh þ sPSPG$qhÞ

� q
@uh

@t
þ u � $u

� �
� $ � r

� �
dXe þ

Xnel

e¼1

Z
Xe

sLSIC$ �whq$ � uh dXe ¼
Z

Ch
wh � hh dC: ð20Þ
The first three terms and the right-hand side in the variational formulation given by Eq. (20) constitute the Galerkin for-
mulation of the problem. The terms involving the element level integrals are the stabilization terms added to the basic Galer-
kin formulation to enhance its numerical stability. These terms stabilize the computations against node-to-node oscillations
in advection dominated flows and allow the use of equal-in-order basis functions for velocity and pressure. The terms with
coefficients sSUPG and sPSPG are based on the SUPG (Streamline-Upwind/Petrov–Galerkin) and PSPG (Pressure-stabilized/Pet-
rov–Galerkin) stabilization. For the definition of these coefficients the interested reader is referred to the article by Tezdyu-
yar et al. [29]. The term with coefficient sLSIC is a stabilization term based on the least squares of the incompressibility
constraint. Equal-in-order basis functions for velocity and pressure are used. A three point quadrature is employed for
numerical integration. Marching in time is done via the generalized trapezoidal rule (Crank–Nicholson method).

4.2. Adjoint equations

A stabilized SUPG/PSPG finite element method is proposed to solve the adjoint Eqs. (13) and (14). The trial and test func-
tion spaces are defined as:
Sh
wu
¼ fwh

ujw
h
u 2 ðH

1hÞnsd ;wh
u¼
: gh on Cgg;

Vh
wu
¼ fwh

wu
jwh

wu
2 ðH1hÞnsd ;wh

wu
¼: 0 on Cgg;

Sh
wp
¼ Vh

wp
¼ fqh

wp
jqh

wp
2 H1hg:
The stabilized finite element formulation of Eqs. (13) and (14) is as follows: given uh and ph satisfying Eqs. (1) and (2), find
wh

u 2 S
h
wu

and wh
p 2 S

h
wp

such that 8wh
wu
2 Vh

wu
and qh

wp
2 Vh

wp
,
Z

X
wh

wu
� q � @w

h
u

@t
þ ð$uhÞTwh

u � u � $wu

 !
dXþ

Z
X
�ðwh

wu
Þ : rwðwh

p;w
h
uÞdXþ

Z
X

qh
wp

$ � wh
udX

þ
Xnel

e¼1

Z
Xe

1
q

sSUPGðq $uhÞT wh
wu
� quh � $wh

wu

� �
þ sPSPG$qh

wp

� �

� q � @w
h
u

@t
þ ð$uhÞTwh

u � u � $wu

 !
� $ � rwðwh

p;w
h
uÞ

" #
dXe þ

Xnel

e¼1

Z
Xe

sLSIC$ �wh
wu

q$ � wh
udXe ¼ 0 ð21Þ
The stabilization coefficients sSUPG; sPSPG and sLSIC in the formulation proposed in Eq. (21) are computed based on the flow
variables ðu; pÞ. For solving the adjoint equations, the flow solution is required at every time step. In the present work the flow
solution is written to disk after every time step. After the time integration of flow equations has been carried out the adjoint
solver reads the flow solution from the disk. The time spent in the input/output operations is found to be negligible compared
to the overall solution time. This approach is expected to be very demanding on storage when extended to three-dimensions. To
address the high demands on storage one can devise strategies based on ideas from information theory. For example, only the
data corresponding to the critical sampling frequency from the Nyquist–Shannon sampling theorem [30] may be stored. The
adjoint variables, for the intermediate time steps, can then be reconstructed from the stored flow via the Whittaker–Shannon
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interpolation formula [31]. It is also possible to use proper orthogonal decomposition (POD) to reduce storage. The POD may be
used to construct a basis for the unsteady flow. The storage of the basis is expected to be significantly cheaper than the storage of
the entire unsteady flow data. Such an approach has been used in the context of optimal control of vortex shedding [32,33],
control of flow separation over a forward facing step [34] and rocket nozzle flow control [35].

5. Implementation of the optimization procedure

A flow-chart listing the various steps in the optimization process in unsteady flows is shown in Fig. 2. The process has
similarities with the one used by the authors for shape optimization in steady flows [15,36]. The details of the implemen-
tation are listed below:

1. Initialize design parameters b and generate initial mesh.The shape parameters, b, that represent the surface to be optimized
are identified. In the present work, NURBS (Non-Uniform Rational Bi-cubic Spline) is used to parameterize the surface.
B-Splines, Bezier curves [37], Hicks and Henne functions [38] are a few other methods that can be used to represent the
shape. Lepine et al. [39] state that one of the primary issues to be addressed in shape optimization is the determination
of the least number of design variables that are capable of representing a large class of airfoil sections. They further note
that any parametrization method that reduces the number of design parameters simplifies the design process as it signif-
icantly reduces the risk of noise. They suggest that a NURBS representation with 13 control points can be used to accurately
represent a large family of airfoils. Fig. 3 shows the representation of a NACA0012 airfoil obtained by using 13 control
points. The corresponding control polygon along with the control points are also shown. The control points at the leading
edge and trailing edge are held fixed to preserve the chord length and angle of attack. The y-co-ordinates of the remaining
control points are used as the design parameters. The difference between the resulting curve and the NACA0012 airfoil is
less than 0.5% of the maximum thickness of the airfoil.A close-up view of the finite element mesh used for computations is
shown in Fig. 4. The mesh consists of 44804 nodes and 89304 triangular elements with 200 nodes on the surface. A struc-
tured mesh is employed close to the airfoil surface and in the near wake to resolve the flow structures adequately. The
remaining domain is filled with an unstructured mesh that is generated via Delaunay triangulation [40].

2. Compute the unsteady flow, u and p and calculate the objective function Ic .The finite element formulation given by Eq. (20) is
utilized to compute the unsteady flow. The computed flow is used to compute Ic. The flow solution at all time steps is
stored on the hard disk.

3. Find wu and wp.The finite element formulation given by Eq. (21) and the unsteady flow computed in previous step is
utilized to compute the adjoint variables.

4. Compute the gradient given by Eq. (12).A finite difference approach, as described by Soto and Lohner [41] is used to calcu-

late the gradient. The formula used is: @I
@b
¼ IðbþDbÞ�IðbÞ

Db
. The value of Db used in this work is 10�2. Srinath and Mittal [36]

carried out a study to investigate the effect of Db in computing the gradient via a finite difference method. It was found
that the round-off errors become significant for Db smaller than 10�6.
Fig. 2. A flow-chart detailing the steps of the optimization process.
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Fig. 3. Representation of NACA0012 airfoil with a NURBS curve. 13 control points are used and shown in the figure. Control points 1, 7 and 13 are held fixed
and the y co-ordinates of remaining ten control points are used as design parameters. The broken line shows the resulting curve.



-0.4

-0.2

0.0

0.2

0.4

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y

x

5. If the convergence criteria, either on the objective function or the gradient, is satisfied, then stop.In the present work, the opti-
mization process is stopped if either the change in objective function, compared to the value in the previous iteration or
the L2 norm of the gradient is less than 1� 10�5.

6. Update the shape parameters, b, in the direction of the gradient.The optimization algorithm used in the present work is the
L-BFGS (Limited memory-Broyden–Fletcher–Goldfarb–Shanno) procedure [42]. This is a limited memory quasi-Newton
method for solving large nonlinear optimization problems that are constrained by upper and lower bounds on the design
variables. The algorithm is well suited for problems when the information for the second derivative (the Hessian) is dif-
ficult to obtain.

7. Modify mesh to accommodate new shape.A mesh moving scheme is employed to modify the mesh. A finite element mesh is
generated for the initial geometry. The nodes are relocated in each iteration of the optimization process to conform to the
changing shape while retaining the connectivity between them. The computational domain is modeled as a linearly elas-
tic solid. To reduce distortion of the mesh the smaller elements are made stiffer. The modified equations of linear elas-
ticity are solved for the internal nodal displacements based on the given shape deformation of the solid boundary. More
details about this procedure can be found in the article by Tezduyar et al. [43].
Fig. 5 shows a typical mesh for a modified airfoil geometry as a result of this mesh moving scheme. In certain cases, the
geometry can be overly complex and the mesh moving scheme may lead to a mesh with unacceptable level of element
distortion. In such cases the mesh may be refined locally [46] or a new mesh generated. Such a case has not been encoun-
tered in the present work.
6. Results

Two test cases are presented. The first case involves a inverse objective on the lift coefficient to find an airfoil that has a
time-averaged lift coefficient of 0.75. The second case involves minimization of a direct objective function on the drag to lift
ratio. For both the cases, NACA0012 airfoil is used as the initial guess. The angle of attack is 4�.
6.1. Inverse objective function: Cl ¼ 0:75

The objective is to determine an airfoil shape that has a time-averaged lift coefficient of 0.75. The objective function is
given by: Ic ¼ 1

2 ðCl � 0:75Þ2. The shape of the airfoil at the end of the optimization cycle is shown in Fig. 6(a). Also shown
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Fig. 6. Inverse design of airfoil for Cl ¼ 0:75 at Re ¼ 1000;a ¼ 4�: (a) initial and optimal shapes and (b) time-averaged Cp distribution.

Fig. 7. Inverse design of airfoil for Cl ¼ 0:75 at Re ¼ 1000;a ¼ 4�: time-averaged pressure field for initial and optimal shapes.
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with it, for reference, is the initial shape. The final shape has bulbous regions close to the leading and trailing edges with a
narrow mid-chord portion. Also shown in Fig. 6(b) is the distribution of the time-averaged pressure coefficients for both the
shapes. The value of the peak suction on the upper surface of the optimal airfoil is much larger than that on the NACA0012
airfoil. The pressure on the lower surface of the optimal airfoil is also larger. This leads to an increased time-averaged lift
produced by the optimal airfoil. This is further seen from Fig. 7 which shows the time-averaged pressure field for the initial
and optimal airfoils.

The iteration history of the objective function is shown in Fig. 8(a). Nine iterations are needed for the optimization process
to converge to the desired accuracy. The iteration history of the time-averaged lift coefficient is shown in Fig. 8(b). Also
shown are a few intermediate shapes obtained during the process. The resemblance between the final shape and that ob-
tained at the end of first iteration of the optimization process is clearly seen. The subsequent iterations lead to finer changes
in the shape, especially in the later half of the airfoil. The time histories of the lift and drag coefficients of the initial and opti-
mal shapes are shown in Figs. 9(a) and (b). The vorticity field, for the initial and optimal shapes, at various time instants of
the fully developed unsteady flow is shown in Fig. 10. The final shape is associated with larger unsteadiness than the
NACA0012 airfoil. It is seen from the time histories of the lift coefficient shown in Fig. 9(a) that the frequency of vortex shed-
ding for the optimal shape is significantly smaller than that for the NACA0012 airfoil. The optimal shape is associated with a
much larger value of drag coefficient than the NACA0012 airfoil. The optimization process, for the unsteady flow leads to a
significantly different shape than the one found for maximizing the lift coefficient for the steady flow at Re ¼ 500 and a ¼ 4�

reported in our earlier work [15]. Interestingly, the shape obtained for maximum Cl for the a ¼ 4� and Re ¼ 10 flow is quite
similar to the one reported here.
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6.2. Effect of T on optimization process

Figs. 9 and 10 show that while the Cl for the NACA0012 airfoil is almost steady, it is quite unsteady for the optimal shape.
Since the time period of unsteadiness is not know a priori, one would like to carry out the time-averaging for each iteration in
the design cycle for a sufficiently long time. A study is carried out to determine the effect of T on the optimization process.
Three control windows, W1;W2;W3 corresponding to 0.1, 3.0 and 10.0 time units, respectively, of the fully developed unstea-
dy flow are chosen. These are shown in Fig. 11(a) for the time history of the NACA0012 airfoil. The convergence history of the
time-averaged lift coefficient while using the three control windows is shown in Fig. 11(b). The optimizer diverges while
using control window W1. It proceeds in the correct direction while using control window W2, but does not converge to
the required accuracy even after 24 design cycles. Convergence criteria is satisfied in merely nine design cycles with the con-
trol window W3.

To investigate the cause of this behaviour we study the gradients obtained for the three control windows at the end of
the first design cycle. Fig. 11(c) shows the value of the gradient, @I

@b
, for each of the ten design variables. Eq. (12) shows that

the contribution to @I
@b

comes from @Ic
@b

as well as the constraint equations. For the first design iteration the flow and the ad-
joints are for the initial shape: the NACA0012) airfoil. Since the Cl is almost steady, the contribution of @Ic

@b
to the gradient

is virtually the same for all the three control windows. The difference in @I
@b

, for the three control windows, is therefore from
the constraint equations. Gradients obtained using control window W1 not only have different magnitude, but for many of
the design variables (5, 8 and 9 as seen in Fig. 11(c)), the sign is also different from those obtained using control windows W2

and W3. The gradients from W2 and W3 are seen to be very close to each other. Control windows W2 and W3 correspond to 1
and 3 vortex shedding cycles of the optimal shape, approximately. These computations confirm that the gradients are ex-
pected to be well represented if either one uses a window that spans an exact integral multiple of number of time periods
of a periodic solution or employs a window that spans a long time duration. As is the case in W1, a window that spans a small
fraction of the time period of an unsteady solution, computations may lead to inaccurate gradients, and therefore, an inac-
curate trajectory of the design cycle. All the computations in this study have been carried out with control window W3.
6.3. Effect of geometric constraint on optimization process

A geometric constraint is imposed on the inverse design problem. The objective is to determine an airfoil with a time-
averaged lift coefficient of 0.75 and a certain volume The objective function is given by Ic ¼ 1

2 ðCl � 0:75Þ2 þ c 1
2 ðV � V0Þ2. Here

V0 is set to 0.05. The weight, c, is required to ensure that both the terms in the objective function contribute, approximately,
equally. If c is too small, the volume constraint may get overwhelmed by the condition on Cl. On the other hand, it is too
large, then the error in the satisfaction of the objective function may be borne largely by the satisfaction of the condition
on Cl. This has been addressed in the context of steady flows in an earlier article [15]. Computations are carried out for var-
ious values of c. The error in satisfaction of lift and volume enclosed is less than 4%. The value of c for these computations is
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10. The optimal airfoil for Ic ¼ 1
2 ðCl � 0:75Þ2 is used as the initial guess. Fig. 12 shows the iteration history of the time-aver-

aged lift coefficient and volume of the airfoil. The final and initial shapes are shown in Fig. 12(c). Unlike the initial shape,
which has a thick leading edge, the final shape has a thinner leading edge.

6.4. Inverse design for various Cl

The airfoil shape obtained from inverse design for Cl ¼ 0:75, and shown in Fig. 6 appears non-intuitive. To investigate this
further, the design is repeated for lower values of Cl: 0.25, 0.35, 0.5 and 0.65. The shapes obtained for these cases are shown
in Fig. 13. The Cl for the NACA 0012 airfoil at a ¼ 4� is 0.2. As expected, the geometry obtained for Cl ¼ 0:25 is very similar to
the NACA 0012 airfoil. However, significant departure from the NACA 0012 airfoil geometry is seen for higher values of Cl.
Starting from the base NACA 0012 geometry the increase in lift is first obtained via modification of the fore section of the
airfoil. This is followed by modification in the aft section on the lower surface. The shapes for Cl ¼ 0:65 and 0.75 are very
similar. This shows that when an ambitious objective is posed, the optimizer is able meet it but with shapes that seem
non-intuitive.

Fig. 14 shows the time histories of Cl for the various optimal shapes. The flow is virtually steady for shapes with Cl ¼ 0:25,
0.35 and 0.5. However, significant unsteadiness is observed for the shape with Cl ¼ 0:65. The frequency of vortex shedding
for the flows with Cl ¼ 0:65 and 0.75 are very similar. Fig. 15 shows the chord wise distribution of the time-averaged pres-
sure coefficient for the various cases studied. In general, the suction on the upper surface of the airfoil increases with increase
in Cl. However, the peak suction appears to depend on how bulbous the leading edge is. Fig. 16 shows the time-averaged
pressure field for the various optimal airfoils. Increase in zone of suction, close to the upper surface of the airfoil, with
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Fig. 16. Re ¼ 1000;a ¼ 4� , time-averaged pressure field for the optimal shapes obtained for various values of Cl: (a) 0.25, (b) 0.35, (c) 0.5 and (d) 0.65.
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increase in Cl is observed. Also seen is an overall increase in the pressure on the lower surface of the airfoil. This is also ob-
served in the Cp distribution shown in Fig. 15. Shapes for Cl ¼ 0:35 and 0.65 have a relatively thicker leading edge compared
to the ones for Cl ¼ 0:25 and 0.5. The airfoil with Cl ¼ 0:5 exhibits a bulbous region on the lower surface close to the trailing
edge. This seems to be the cause of larger pressure on the lower surface and the increased time-averaged lift. The airfoils for
Cl ¼ 0:65 as well Cl ¼ 0:75 have a bulbous region close to the leading as well as trailing edge.
6.5. Direct objective function: minimization of ðCd=ClÞ

This example involves determining the airfoil that minimizes the time-averaged drag to lift ratio at Re ¼ 1000. The objec-

tive function is given by Ic ¼ 1
2

Cd

Cl

� �2
. The initial and final shapes are shown in Fig. 17(a). The final shape is akin to a curved

plate with a bulbous leading edge. The Cp distribution, shown in Fig. 17(b), for the optimal shape shows a slightly large suc-
tion zone on the upper surface. The lower surface exhibits higher pressure for the optimal shape. The iteration history of the



Fig. 20. Design of airfoil for Cd=Cl at Re ¼ 1000;a ¼ 4�: Vorticity contours for the initial and optimal shapes at t ¼ 27:75. The flow over the optimal shape
achieves a steady state.
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time-averaged drag to lift ratio is shown in Fig. 18(a). The NACA0012 airfoil at Re ¼ 1000 and a ¼ 4� has a drag to lift ratio of
0:6. At the end of the optimization process, the ratio of drag to lift is reduced to 0.2. The optimizer required 14 design cycles
to achieve this value. The iteration history of the time-averaged drag and lift coefficients is shown in Fig. 18(b). The optimal
shape has 4% lesser drag than the NACA0012 airfoil, while it generates 3 times more lift. Figs. 19(a) and 19(b) show the time
histories of the lift and drag coefficient, respectively. The vorticity field for the initial and final shapes is shown in Fig. 20.
Unlike for the NACA0012 airfoil, the flow for the optimal shape achieves a steady state.
7. Conclusions

A new method, based on the time accurate continuous adjoint approach, for shape optimization for unsteady viscous
flows has been presented in this paper. The time accurate continuous adjoint equations have been derived. The boundary
conditions for the adjoint equations are generated for various objective functions. A stabilized finite element method based
on the SUPG/PSPG stabilization has been used to solve, both, flow and the adjoint equations. The airfoil is represented by a
NURBS curve. The y-co-ordinates of the control points have been used as design variables. To validate the algorithm, two test
cases have been carried out. Both the cases involve enhancing the time-averaged aerodynamic coefficients of an airfoil at
Re ¼ 1000 and a ¼ 4�. For both the cases, NACA0012 airfoil has been used as the initial guess.

The first test case involves an inverse objective function on the time-averaged lift coefficient. The objective is to obtain an
airfoil that has a time-averaged lift coefficient of 0.75. The optimizer is able to obtain the required solution within nine de-
sign iterations. A study is carried out to determine the effect of extent of the window of time integration of flow and adjoint
equations on the design process. It is found that too small a window leads to inaccurate gradients which in turn result in an
inaccurate search direction and degradation of the convergence of optimization cycle.

The shapes of airfoils for relatively low values of time-averaged lift coefficient are very similar to conventional airfoils.
Non-intuitive shapes are obtained for large values of Cl. The second test case involves a direct objective function on the
time-averaged drag to lift ratio. An airfoil that has 67% less drag to lift than the initial NACA0012 airfoil is obtained. These
examples demonstrate the potential of the proposed method to optimize aerodynamic shapes in unsteady flow.
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